Inicial Perfil Ensino Pesquisa Extensão
Inicial
Perfil
Ensino
Pesquisa
Extensão
Blogs & Pages
Imagem
ARTICULOS LEGERE
  • M. V. Lokajícek: Quantum mechanics and irreversible time flow. arXiv: quant-ph/0211024v1  
  • D.W. Snokea, Gangqing Liua, S.M. Girvinb: The basis of the Second Law of thermodynamics in quantum field theory.   Annals of Physics Volume 327, Issue 7, (July 2012), pp. 1825–1851. [DOI! 21/06/2012] 
  • F. Gómez: Selfadjoint time operators and invariant subspaces. arXiv: math-ph/0607041v2.
    A.K. Pati, B. Pradhan, P. Agrawal: Entangled brachistochrone: minimum time to reach the target entangled state. Quantum Inf Process 11 (2012):841–851. DOI: 10.1007/s11128-011-0309-z
- A. Kossakowski: On quantum statistical mechanics of non-Hamiltonian systems. Reports on Mathematical Physics Volume 3, Issue 4, December 1972, Pages 247-274

- P. A. Markowich, C. A. Ringhofer: An Analysis of the Quantum Liouville Equation. Journal of Applied Mathematics and Mechanics, Volume 69 Issue 3, Pages 121 - 127

- Paul Busch, Marian Grabowski and Pekka J. Lahti: Time observables in quantum theory. Physics Letters A Volume 191, Issues 5-6, 22 August 1994, Pages 357-361

- ,Logicoalgebraic approach to symplectic mechanics, Lettere Al Nuovo Cimento (1971 – 1985), Volume 41, Number 17 / December, 1984: Pages:    559-560


-
E. B.Davies: Pseudo-spectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. A455 (1999): 585–599.

- K. Kraus: General state changes in quantum theory. Annals of Physics Volume 64, Issue 2, June 1971, Pages 311-335

- Ilya Prigogine. Dissipative processes in quantum theory. Physics Reports Volume 219, Issues 3-6, October 1992, Pages 93-108

- M. S. Marinov: A quantum theory with possible leakage of information. Nuclear Physics B Volume 253, 1985, Pages 609-620

- Andrzej Kossakowski, Rolando Rebolledo, On non-Markovian Time Evolution. Open Quantum Systems Volume 14, Issue 3 (2007): pp. 265-274. DOI: 10.1007/s11080-007-9051-5

- Ilya Prigogine, Tomio Y. Petrosky, Intrinsic irreversibility in quantum theory. Physica A: Statistical Mechanics and its Applications Volume 147, Issues 1-2, 2 November 1987, Pages 33-47

- Donald J. Kouri, David K. Hoffman, Time-dependent integral equation approach to quantum dynamics of systems with time-dependent potentials Chemical Physics Letters Volume 186, Issue 1, 1 November 1991, Pages 91-99


FUNDAMENTOS DA FÍSICA
  • George F.R. Ellis: On the limits of quantum theory: Contextuality and the quantum–classical cut. Annals of Physics Volume 327, Issue 7 (July 2012) pp. 1890–1932. [DOI! 21/06/2012] 
  • Diederik Aerts, Quantum structures, separated physical entities and probability, Found. Phys. 24, no.9 (September, 1994): 1227-1259.
  • J. Conway, S. Kocken, The Free Will Theorem, Found. Phys. 36(10) (1996): 1441-1473. DOI: 10.1007/s10701-006-9068-6

MECÂNICA CLÁSSICA

Mecânica dos fluidos
  • Jingyi Chao, Thomas Schäfer: Conformal symmetry and non-relativistic second-order fluid dynamics. Annals of Physics Volume 327, Issue 7 (July 2012 pp.1852–1867. [DOI: 21/06/2012]
MECÂNICA QUÂNTICA

Fundamentos da Mecânica Quântica
  • John C. Baez: Division Algebras and Quantum Theory.
    Foundations of Physics Volume 42, Number 7 (2012): pp. 819-855. DOI: 10.1007/s10701-011-9566-z
    [Link! 28/06/2012]
    Abstract: "Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’. It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly ‘complex’ representations), those that are self-dual thanks to a symmetric bilinear pairing (which are ‘real’, in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are ‘quaternionic’, in that they are the underlying complex representations of representations on quaternionic Hilbert spaces). This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics. More generally, Hilbert spaces of any one of the three kinds—real, complex and quaternionic—can be seen as Hilbert spaces of the other kinds, equipped with extra structure."
Teoria da Mensuração
  • S. Albeverio, V. N. Kolokol'tsov, and O. G. Smolyanov: Continuous Quantum Measurement: Local and Global Approaches. Rev. Math. Phys. 9 (8) (1997): 907. DOI: 10.1142/S0129055X97000312.

Interpretações da Mecânica Quântica
>>>>> Mecânica Quântica Categórica
  • Chris Heunen: Complementarity in Categorical Quantum Mechanics. Foundations of Physics Volume 42, Number 7 (2012), 856-873. DOI: 10.1007/s10701-011-9585-9
    [Link! 28/06/2012]
    Abstract: "We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras."

>>>>> Mecânica Quântica Modal
  • Benjamin Schumacher and Michael D. Westmoreland: Modal Quantum Theory. Foundations of Physics Volume 42, Number 7 (2012): pp. 918-925. DOI: 10.1007/s10701-012-9650-z
    [Link! 28/06/2012]
    Abstract: "We present a discrete model theory similar in structure to ordinary quantum mechanics, but based on a finite field instead of complex amplitudes. The interpretation of this theory involves only the “modal” concepts of possibility and necessity rather than quantitative probability measures. Despite its simplicity, our model theory includes entangled states and has versions of both Bell’s theorem and the no cloning theorem."

Quantum information and computation
  • Quantum Physics at CMU  
  • John Preskill: Course on Quantum Computation
  • Jingxin Cui, Tao Zhou, Gui Lu Long: Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox. Quantum Information Processing 11(2) (2012), 317-323, DOI: 10.1007/s11128-011-0243-0. [Link! 11/06/2012]
  • Scott Aaronson: The limits of quantum computation. Scientific American, March 2008. [Link! 31/05/2012]

---------- INFORMATION THEORY

- An Introduction to Information Theory (Paperback), by John R. Pierce (Author)

- Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Processing) (Hardcover), by Thomas M. Cover (Author), Joy A. Thomas, Joy A. Thomas (Author),

- INFORMATION THEORY APPLIED TO SPACE-TIME PHYSICS, by Henning F Harmuth, World Scientific

- Referências de uma disciplina de Teria da Informação para um curso de Computação:

# Richard Blahut, "Principles and Pratice of Information Theory", Addison-Wesley, 1991
# A. Bruce Carlson, "Communication Systems", McGraw-Hill, 1986
# Thomas M. Cover and Joy A. Thomas, "Elements of Information Theory", John Wiley, 1991
# M. de Abreu Faro, "A peregrinação de um sinal", Gradiva, 1995
# Ajay Dholakaia, "Introduction to convolutional Codes with Applications", Kluwer Academic Publishers, 1994
# Edward A. Lee, "Digital Communications", Kluwer Academic Publishers, 1994

Simetrias

  • G. Cassinelli, E. de Vito, P. Lahti, A. Levrero: The Theory of Symmetry Actions in Quantum Mechanics. Springer, 2003.
  • G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero: Symmetry groups in quantum mechanics and the theorem of Wigner on the symmetry transformations. Rev. Math. Phys. 9 (8) (1997): 921-941. DOI: 10.1142/S0129055X97000324. [Link! 25/07/2012]
  • Gianni Cassinelli, Ernesto de Vito, Pekka Lahti, Alberto Levrero: Symmetries of the Quantum State Space and Group Representations. Reviews in Mathematical Physics 10 (7) (1998): 893-924. DOI: 10.1142/S0129055X9800029X.

Decoerência

  • S. Boonpan, B. Panacharoensawad, S. Boonchu: The loss of quantum coherence induced by a Gaussian random potential. Physics Letters A, Volume 376, Issue 19, 9 April 2012: 1589-1592. [DOI]

Sistemas Dissipativos

  • R. Alicki, K. Lendi (Eds.): Quantum Dynamical Semigroups and Applications. Berlin-Heidelberg: Springer-Verlag, 2007.
  • P. Garbaczewski, R. Olkiewicz (Eds.): Dynamics of Dissipation. Berlin-Heidelberg: Springer-Verlag, 2002.
  • U. Weiss, Quantum dissipative systems (2nd edition), World Scientific, 1990.
  • C. Enz, Hamiltonian description and quantization of dissipative systems, Found. Phys. 24, no.9 (September, 1994): 1281-1292.
  • H.-T. Elze, G. Gambarotta, F. Vallone: General linear dynamics – quantum, classical or hybrid. J. Phys.: Conf. Ser. 306 (2011) 012010 (17 pages). Doi: 10.1088/1742-6596/306/1/012010.

Tópicos em Mecânica Quântica

Efeito Zeno

  • C.B. Chiu, E.C.G. Sudarshan, B. Misra, Phys. Rev. D 16 (1977) 520.
    E.C.G. Sudarshan, B. Misra, J. Math. Phys. 18 (1977) 756.

Efeito Kauffin (decaimento polinomial em tempos longos)

  • L.A. Khalfin, Soviet Phys. JETP 6 (1958) 1053.

Mecânica Quântica RHS

  • Arno Bohm, Heinz-Dietrich Doebner, Piotr Kielanowski: Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces (Lecture Notes in Physics, vol.504).

I. Antoniou, L. Dmitrieva, Yu. Kuperin, Yu. Melniko, Resonances and the extension of dynamics to rigged Hilbert space, Computers & Mathematics with Applications, Volume 34, Issues 5-6, September 1997, Pages 399-425
http://dx.doi.org/10.1016/S0898-1221(97)00148-X

I. Antoniou, Yu. Melnikov, E. Yarevsky, The connection between the rigged Hilbert space and the complex scaling approaches for resonances. The Friedrichs model, Chaos, Solitons & Fractals, Volume 12, Issues 14-15, 12 November 2001, Pages 2683-2688
http://dx.doi.org/10.1016/S0960-0779(01)00082-0

I.E. Antoniou, M. Gadella, E. Karpova, I. Prigogine, G. Pronko, Gamov algebras, Chaos, Solitons & Fractals, Volume 12, Issues 14-15, 12 November 2001, Pages 2757-2775
http://dx.doi.org/10.1016/S0960-0779(01)00089-3


- K. Goodrich and K. Gustafson, B. Misra, On converse to Koopman's Lemma, Physica A: Statistical and Theoretical Physics, Volume 102, Issue 2, July 1980, Pages 379-388.

- D. S. Onley and A. Kumar, “Time dependence in quantum mechanics study of a simple decaying system,” Am. J. Phys. 60, 432–439 (1992).

- P. Garbaczewski, R. Olkiewicz (Eds.), Dynamics of Dissipation, Lecture Notes in Physics, vol. 597, Springer, Berlin, 2003.

RESSONÂNCIAS em MQ

- E. Brandas, N. Elander (Eds.), Resonances, Lecture Notes in Physics, vol. 325, Springer, Berlin, 1989.

- Pólos do operador resolvente caracterizam os estados ressonantes: S. Albeverio, L.S. Ferreira, L. Streit (Eds.), Resonances—Models and Phenomena, Lecture Notes in Physics, vol. 211, Springer, Berlin, 1984, p. 1984.

- Barry Simon, Resonances and complex scaling: A rigorous overview, International Journal of Quantum Chemistry 14(4) (1978): 529-542
DOI: 10.1002/qua.560140415
US: http://dx.doi.org/10.1002/qua.560140415
ABSTRAC: We review certain aspects of the theory of resonances and give a comprehensive review of the rigorous aspects of complex scaling.


MECÂNICA QUÂNTICA RHS

Review da formulação rhs:

- J.-P. Antoine, Quantum Mechanics Beyond Hilbert Space, in A. Bo¨hm, H.-D. Doebner, P. Kielanowski, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, edited by A. Bo¨hm, H.-D. Doebner, and P. Kielanowski, Lecture Notes in Physics 504 ~Springer, Berlin, 1998!, pp. 3–33.

Review de ressoâncias na formulação rhs:

- A. B¨ohm, S. Maxson, M. Loewe, and M. Gadella, Physica A 236, 485 ~1997!.


MECÂNICA QUÂNTICA: MODELOS

- K. Kowalski, K. Podlaski, and J. Rembielinski, Quantum mechanics of a free particle on a plane with an extracted point, Phys. Rev. A 66, 032118 (2002) [9 pages]
http://prola.aps.org/abstract/PRA/v66/i3/e032118

DECAIMENTO

- ESTADOS de GAMOW: G. Gamow, Z. Phys.51, 204 (1928)

- REVIEW: O. Civitarese, M. Gadella, Physical and mathematical aspects ofGamow states, Physics Reports 396 (2004) 41–113.

- L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41 (1978) 587.

Mecânica Quântica no Espaço de Fase

  • C.K. Zachos, D.B. Fairlie, T.L. Curtright, Quantum Mechanics in Phase Space: an overview with selectec papers, World Scientific, 2005.

Hamiltonianos generalizados

  • Carl M. Bendera, Philip D. Mannheimb: PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues. Physics Letters A, Volume 374, Issues 15–16 (5 April 2010): 1616–1620. Doi: http://dx.doi.org/10.1016/j.physleta.2010.02.032 [Link! 19/06/2012]

RELATIVIDADE

Teorias do espaço-tempo
Princípio de Mack
Julian Barbour: The Definition of Mack's Principle. arXiv: 1007.3368  

Relatividade Parametrizada

  • Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Kluwer, Amsterdam (1993)
  • Fanchi, J.R.: Found. Phys. 23, 487 (1993)

TEORIA QUÂNTICA DE CAMPOS

Teoria de Yang-Mills

  •  G. t'Hooft: 50 Years of Yang-Mills Theory. World Scientific, 2005.

Experimento Mental de Fermi:

  • G. C. Hegerfeldt, Phys. Rev. Lett. 72, (1994) 596

  • D. Buchholz and J. Yngvason, Phys. Rev. Lett. 73, (1994) 613

Quebra Expontânea de Simetria

  • Giovanni Jona-Lasinio: Spontaneous Symmetry Breaking: Variations on a Theme. Prog. Theor. Phys. Vol. 124 No. 5 (2010) pp. 731-746. [Link!]

Teoria da Perturbação

  • Stefan Hollands, Christoph Kopper: The Operator Product Expansion Converges in Perturbative Field Theory. CMP 313(1) (2012): pp.257-290. DOI: 10.1007/s00220-012-1457-4. [Link! 11/06/2012]

Fenômenos críticos

  • Colin J. Thompson: Validity of Mean-Field Theories in Critical Phenomena. Prog. Theor. Phys. Vol. 87 No. 3 (1992) pp. 535-559. [Link!]

Sistemas de Campos Quânticos Abertos

  • R. Clifton, H. Halvorson: Entanglement and open systems in algebraic quantum field theory. arXiv: quant-ph/0001107v1 (28 Jan 2000)

FÍSICA ESTATÍSTICA

  • Hirotsugu Matsuda, Naofumi Ogita, Akira Sasaki, Kazunori Satô: Statistical Mechanics of Population -— The Lattice Lotka-Volterra Model. Prog. Theor. Phys. Vol. 88 No. 6 (1992) pp. 1035-1049. [Link!]


TERMODINÂMICA

  • Wikipedia
  • Takuya Yamano: H-theorems based upon a generalized, power law-like divergence. Physics Letters A, Volume 374, Issues 31–32 (12 July 2010): 3116–3118. Doi: http://dx.doi.org/10.1016/j.physleta.2010.05.069. [Link! 19/06/2012]
  • Takahiro Sagawa: Thermodynamics of Information Processing in Small Systems. Prog. Theor. Phys. Vol. 127 No. 1 (2012) pp. 1-56. [Link!]

FÍSICA DO TEMPO-ESPAÇO

  • Time direction  Página de H.D. Zeh, relacionada a seu livro The Physical Basis of the Direction of Time
  • H. Reichenbach: The Direction of Time. University of California Press. Los Angeles, 1971
  •  P.C.W. Davies: The Physics of Time Asymmetry. Surrey University Press. London, 1974.
  • R. Penrose: The Emperor’s New Mind. Oxford University Press. London, 1989.
  • H. Price: Time’s Arrow and Archimedes’ Point. Oxford University Press. New York, 1996.
  • H.D.Zeh: The Physical Basis of the Direction of Time. Springer Heidelberg. 2007
  • J. J. Halliwell, et al., eds.: Physical Origins of Time Asymmetry. Cambridge University, 1994.
  • Arno Bohm, Heinz-Dietrich Doebner, Piotr Kielanowski: Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces (Lecture Notes in Physics, vol.504).
  • Jos Uffink: Bluff your way in the second law of thermodynamics. Studies in History and Philosophy of Modern Physics, Vol. 32: pp. 305-394.
  • E. Minguzzi: On the existence of time in non-singular spacetimes. Journal of Physics: Conference Series 174 (2009): 012068. Doi: 10.1088/1742-6596/174/1/012068.
    Mais: arXiv:0806.0153, arXiv:0809.1214, arXiv:0901.0904, arXiv:0807.0103

Reversão temporal

  • G.E. Crooks, Quantum Operation Time Reversal. Phys. Rev. A 77 (2008) 034101.
  • M.A. Castagnino, A.R Ordóñez, A general mathematical structure for the time-reversal operator,
    arXiv:quant-ph/0103132.
  • F. Ticozzi, M. Pavon, On time-reversal and space-time harmonic processes for Markovian quantum
    channels, Quantum Inf. Process 9 (2010) 551-574.

Paradoxo de Loschmidt

  • Wikipedia
  • B.L. Holian, W.G. Hoover, H.A. Posch: Resolution of Loschmidt's Paradox: The Origin of Irreversible Behavior in Reversible Atomic Dynamics. Phys. Rev. Lett. Vol.59, No.1 (6 July 1987): 10-13. [Link! 29/06/2012]
  • L. Maccone: Quantum Solution to the Arrow-of-Time Dilemma. Phys. Rev. Lett. Vol.103 (21 August 2009): p.080401 (4 pages). DOI: 10.1103/PhysRevLett.103.080401. Link!
  • Science 2.0: Fibonacci Chaos and Time's Arrow. Link!
  • Science 2.0:  What's Wrong with Second Law? Link!

Metafísica

  • M.Silberstein, W. M. Stuckey, T. McDevitt: Being, Becoming and the Undivided Universe: A Dialogue Between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory. Foundations of Physics 2012 (online first).
    DOI: 10.1007/s10701-012-9653-9 [Link!]

Assimetria/Seta Temporal:

  • A. Connes, C. Rovelli: Von Neumann algebra automorphisms
    and time-thermodynamics relation in general covariant quantum theories
    . Link!
  • Lorenzo Maccone: Quantum Solution to the Arrow-of-Time Dilemma. Phys. Rev. Lett. 103 (2009): 080401  [4 pages].
    DOI: 10.1103/PhysRevLett.103.080401 [Link!]
  • Oleg Kupervasser, Hrvoje Nikoliæ and Vinko Zlatiæ: The Universal Arrow of Time. Foundations of Physics 2012.
    DOI: 10.1007/s10701-012-9662-8 [Link!]
    Abstract: "Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can explain why the thermodynamic arrow of time is universal, i.e., why the arrow points in the same direction everywhere. Namely, if two subsystems have opposite arrow-directions at a particular time, the interaction between them makes the configuration statistically unstable and causes a decay towards a system with a universal direction of the arrow of time. We present general qualitative arguments for that claim and support them by a detailed analysis of a toy model based on the baker’s map."

Formulação RHS:

  • A.R. Bohm, M. Gadella, P. Kielanowski: Time Asymmetric Quantum Mechanics. SIGMA 7 (2011) 086 (13 pages). Doi:     10.3842/SIGMA.2011.086.

COSMOLOGIA

  • Present status of cosmology: Peebles, arXiv: 09105142
  • José Ademir Sales de Lima: arXiv: 09115727

ENTROPIC GRAVITY

  • Erik P. Verlinde: On the Origin of Gravity and the Laws of Newton. JHEP 1104 (2011: 029. arXiv: 1001.0785v1 [hep-th]

TEORIA DAS CORDAS

  • Lee Smolin: A Perspective on the Landscape Problem. Foundations of Physics 2012 (online first).
    DOI: 10.1007/s10701-012-9652-x [Link! 28/06/2012]

FÍSICA COMPUTACIONAL (métodos numéricos)
V. García-Morales: Universal map for cellular automata. Physics Letters A 376(40–41) (20 August 2012): 2645–2657. URL!

Método de Monte-Carlo

  • Fumitaka Matsubara, Taketoshi Itoya: Hybrid Monte-Carlo Spin-Dynamics Simulation of Short-Range ±J Heisenberg Models with and without Anisotropy. Prog. Theor. Phys. Vol. 90 No. 3 (1993) pp. 471-498. [Link!]
  • Seiji Miyashita, Hidetoshi Nishimori, Akira Kuroda, Masuo Suzuki: Monte Carlo Simulation and Static and Dynamic Critical Behavior of the Plane Rotator Model. Prog. Theor. Phys. Vol. 60 No. 6 (1978) pp. 1669-1685. [Link!]

MODELOS

Modelos em Mecânica Quântica

Modelos de neutrinos

  • Esterile neutrinos‘ webpage
  • Janet‘s neutrino oscillation page
  • Theory of neutrino oscillations with entanglement: http://prd.aps.org/abstract/PRD/v82/i9/e093003
  • Disentangling neutrino oscillations: http://www.sciencedirect.com/science/article/pii/S0370269309006911
  • A. Palazzo: Hint of nonstandard Mikheyev-Smirnov-Wolfenstein dynamics in solar neutrino conversion. Phys. Rev. D 83 (2011) 101701(R) (5 pages). Doi: 10.1103/PhysRevD.83.101701.
  • S. Abe et al. (The KamLAND Collaboration): Precision Measurement of Neutrino Oscillation Parameters with KamLAND}, Phys. Rev. Lett. 100 (2008) 221803 (5 pages). Doi: 10.1103/PhysRevLett.100.221803.
Inicial | Perfil | Ensino | Pesquisa | Extensão
Site Map